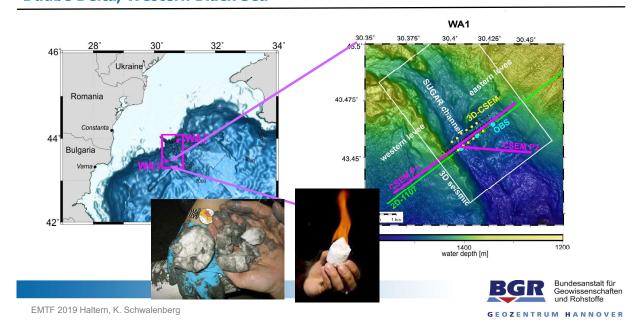
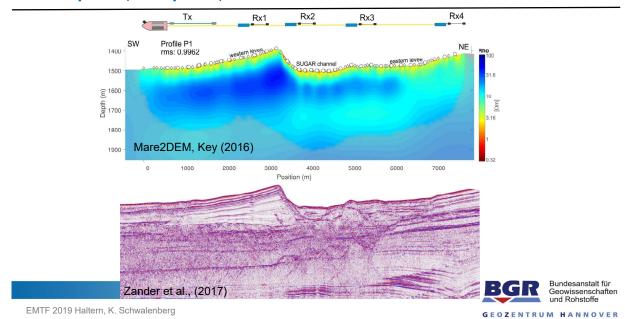

Archie's Law - Boon or Bane? An approach to estimate gas hydrate saturations

Katrin Schwalenberg (BGR) & Romina Gehrmann (University of Southampton)

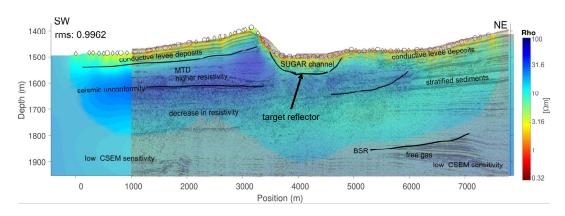

The Boon: A practical tool to relate resistivity to porosity, salinity, saturation estimates

The Bane: Often used standard coefficients may lead to over- / underestimated saturation estimates



EMTF 2019 Haltern, K. Schwalenberg, Archie's Law

Daube Delta, Western Black Sea



Resistivity model, Gas Hydrates, Black Sea

Resistivity Model, Gas Hydrates, Black Sea

what is the gas hydrate saturation?

EMTF 2019 Haltern, K. Schwalenberg

BGR Bundesanstalt für Geowissenschaften und Rohstoffe

Archie's Law, parameters

$$\rho_f$$
 = $a \rho_w \Phi^{-m}$

$$\rho_{f'}$$
 = $a \rho_w \Phi^{-m} (1-S_h)^{-n}$

$$\rho_{f'} = \rho_f (1 - S_h)^{-n}$$

$$\frac{1}{R} = \frac{\phi^m}{aR_w(1 - V_{cl})} S_w^n + \frac{V_{cl}}{R_{cl}} S_w^{n-1}.$$

 ρ_f = formation resistivity

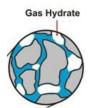
a = constant, tortuosity factor

 $\rho_{\rm W}$ = pore water resistivity

 $\Phi = \text{porosity}$

m = cementation factor

 S_h = gas hydrate saturation

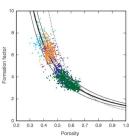

n = saturation exponent

 ρ_f / ρ_w = formation factor

 R_{cl} = clay resistivity

 V_{cl} = clay volume fraction

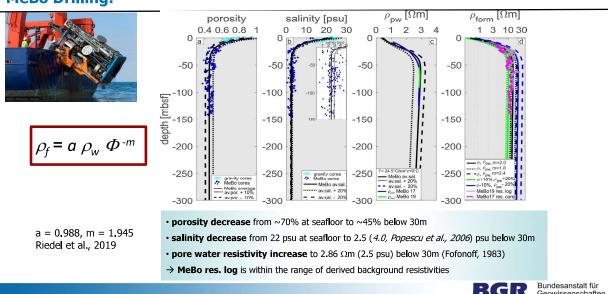
Simandoux, 1963, Lee & Collett, 2006



EMTF 2019 Haltern, K. Schwalenberg

Archie coefficients:

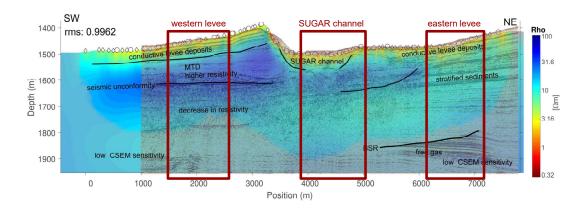
				40
				10
а	1 for Φ =100% \neq 1 Intercept of the log ρ / log Φ at Φ =100%	Winsauer 1952	Better fit	Formation factor
m	1.8 - 2.0 unconsolidated sands 1.4 - 1.9 sand to shell 2.0 - 2.3 clean sands 1.8 - 3.0 compacted sandstone 1.945	Archie, 1942 Jackson et al, 1978 Salem & Chilingariam, 1999 Riedel et al., 2019	Depends on shape rather than grain size and sorting; Varies with clay content	2 -
n	~ 2 1.9386 0.5 - 4 2.5 +/- 0.5	Archie, 1942 Pearson et al, 1983 Spangenberg 2001 Cook& Waite, 2018	Depends on m, Φ, grain size and distribution, saturation	m: s a: in


m: slope a: intercept at Φ = 100%

a = 1, m = 2, n = 2 are often used standard Archie coefficients

EMTF 2019 Haltern, K. Schwalenberg

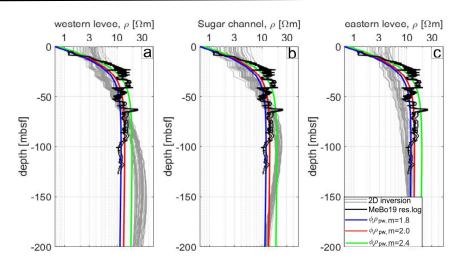
GEOZENTRUM HANNOVER


MeBo Drilling:

EMTF 2019 Haltern, K. Schwalenberg

BUNDES BU

Model selection:



EMTF 2019 Haltern, K. Schwalenberg

Bundesanstalt für Geowissenschaften und Rohstoffe

GEOZENTRUM HANNOVER

MeBo resistivity compared to inverted resistivity:

EMTF 2019 Haltern, K. Schwalenberg

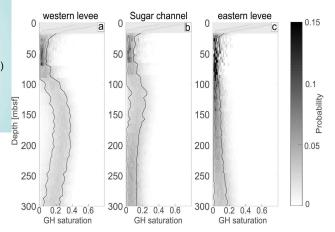
Saturation Models

- Average pore water resistivity: $0.4 \Omega \text{m} \rightarrow 2.86 \Omega \text{m}$ below 40 m
- a=1, n=2.5

Does the same set of Archie coefficients hold for the entire model?

BUNDESANSTAILT ÜT Geowissenschaften und Rohstoffe

EMTF 2019 Haltern, K. Schwalenberg

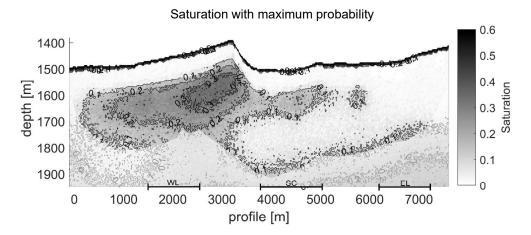

Stochastic Approach, 1D

Input parameter ranges:

- Log ρ ranges (Gaussian)
- Average porosity +/- 20% (Gaussian)
- Average pore water resistivity, salinity +/- 10% (uniform)
- a = [0.9 1.1]; m = [1.8 2.5]; n = [2.0 2.5] (uniform)
- → 5000 realizations of Archie's Law
- → sorting (rms < 1), GH binning [0 1]

$$S_h=1-\left[\frac{a\,\rho_w\,\phi^{-m}}{\rho_f}\right]^{1/n}$$

After Sava and Hardage, 2007



68% confidence intervals

BGR Bundesanstalt für Geowissenschaften und Rohstoffe

EMTF 2019 Haltern, K. Schwalenberg

Stochastic Approach, 2D

Schwalenberg et al., soon submitted to SI MarPotGeo

EMTF 2019 Haltern, K. Schwalenberg

Conclusions

Archie's Law (1942)

$$ho_{f'}$$
 = $a
ho_w \Phi^{-m} (1-S_h)^{-n}$

- > The Boon: A practical tool to relate resistivity to porosity, salinity, saturation estimates
- The Bane: Often used standard coefficients may lead to over- / underestimated saturation estimates
- The stochastic approach can help to define saturation ranges based on probability and credibility intervals

EMTF 2019 Haltern, K. Schwalenberg

Acknowledgements

- The SUGAR project which was jointly funded by the German Federal Ministry of Education and Research (BMBF) and the German Federal Ministry of Economic Affairs and Energy (BMWi) (grants 03G0688A, 03SX320Z).
- We acknowledge the captain and crew of R/V Maria S. MERIAN voyage MSM 35 for their excellent support to collect the CSEM data. The German Science Foundation (DFG) provided the ship time on R/V MARIA S MERIAN.
- The MeBo drilling data used in this study were kindly provided by Michael Riedel und Matthias Haeckel.
- > We thank Kerry Key for making MARE2DEM available to the community.

BUNDESANSTAILT FÜR GEOWISSENSCHAften und Rohstoffe

GEOZENTRUM HANNOVER

EMTF 2019 Haltern, K. Schwalenberg